
Standard Ecma-XXX
1st Edition / 19 June 2025

Sockets API

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

COPYRIGHT PROTECTED DOCUMENT

Ecma International
Rue du Rhone 114 CH-1204 Geneva
Tel: +41 22 849 6000
Fax: +41 22 849 6001
Web:https://www.ecma-international.org

© Ecma International

is the registered trademark of Ecma International

1 Concepts . 4
1.1 Socket . 4
1.2 Connect . 4
1.3 Binding Object. 4
2 Socket . 5
2.1 Using a socket . 5
2.2 The Socket class . 5
2.3 Attributes . 6
2.3.1 readable . 6
2.3.2 writable . 7
2.3.3 opened . 7
2.3.4 closed. 7
2.4 Methods . 8
2.4.1 close(optional any reason) . 8
2.4.2 startTls() . 8
2.5 SocketError . 8
3 connect . 9
3.1 SocketOptions dictionary . 9
3.2 SocketInfo dictionary. 10
3.3 AnySocketAddress type . 10
References . 11
Normative References . 11
Index. 11
Terms defined by this specification . 11
Terms defined by reference . 11
IDL Index. 13
Copyright & Software License . 13
Copyright Notice . 14
Software License. 14

pageTable of Contents

© Ecma International 2025 i

This document defines an API for establishing TCP connections in Non-Browser JavaScript runtime
environments. Existing standard APIs are reused as much as possible, for example ReadableStream
and WritableStream are used for reading and writing from a socket. Some options are inspired by
the existing Node.js net.Socket API.

Introduction

© Ecma International 2025 iii

https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream

This version:
https://sockets-api.proposal.wintercg.org/

Issue Tracking:
GitHub

Editors:
Dominik Picheta (Cloudflare)

Ethan Arrowood

James M Snell (Cloudflare)

A socket represents a TCP connection, from which you can read and write data. A socket begins in
a connected state (if the socket fails to connect, an error is thrown). While in a connected state, the
socket’s ReadableStream and WritableStream can be read from and written to respectively.

A socket becomes closed when its close() method is called. A socket configured with
allowHalfOpen: false will close itself when it receives a FIN or RST packet in its read stream.

The connect method here is defined in a sockets module only for initial implementation purposes.
It is imagined that in a finalized standard definition, the connect would be exposed as a global or
within a binding object

A socket can be constructed using a connect method defined in a sockets module (early imple-
mentations may use vendor:sockets for the module name), or defined on a binding object.

The connect method is the primary mechanism for creating a socket instance. It instantiates a sock-
et with a resource identifier and some configuration values. It should synchronously return a socket
instance in a pending state (or an error should be thrown). The socket will asynchronously connect
depending on the implementation.

A binding object in this context is essentially just an object that exposes a connect method confor-
mant with this specification. It is anticipated that a runtime may have any number of such objects.
This is an area where there is still active discussion on how this should be defined.

The binding object defines extra socket connect options. The options it contains can modify the
behaviour of the connect invoked on it. Some of the options it can define:

• TLS settings
• The HTTP proxy to use for the socket connection

Contributing to this
Specification

1. Concepts
1.1. Socket

1.2. Connect

1.3. Binding Object

4 © Ecma International 2025

https://sockets-api.proposal.wintercg.org/
https://github.com/wintercg/proposal-sockets-api/issues/
mailto:dominik@cloudflare.com
https://cloudflare.com/
mailto:ethan@arrowood.dev
mailto:jsnell@cloudflare.com
https://cloudflare.com/
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream

The binding object is the primary mechanism for runtimes to introduce unique behavior for the
connect method. For example, in order to support more TLS settings, a runtime may introduce a
TLSSocket interface that extends from Socket. Thus, the binded connect() method could then uti-
lize additional properties and configuration values that are controlled by the new TLSSocket inter-
face.

const tls_socket = new TLSSocket({ key: '...', cert: '...' });
tls_socket.connect("example.com:1234");

Additionally, the binding object does not necessarily have to be an instance of a class, nor does it
even have to be JavaScript. It can be any mechanism that exposes the connect() method. Cloud-
flare achieves this through environment bindings.

A basic example of using connect with an echo server.

const socket = connect({ hostname: "my-url.com", port: 43 });

const writer = socket.writable.getWriter();
await writer.write("Hello, World!\r\n");

const reader = socket.readable.getReader();
const result = await reader.read();

console.log(Buffer.from(result.value).toString()); // Hello, World!

The Socket class is an instance of the socket concept. It should not be instantiated directly
(new Socket()), but instead created by calling connect(). A constructor for Socket is intentionally
not specified, and is left to implementors to create.

2. Socket
2.1. Using a socket

2.2. The Socket class

© Ecma International 2025 5

https://developers.cloudflare.com/workers/configuration/bindings/

[Exposed=*]
dictionary SocketInfo {

DOMString remoteAddress = null;
DOMString localAddress = null;
DOMString alpn = null;

};

[Exposed=*]
interface Socket {

readonly attribute ReadableStream readable;
readonly attribute WritableStream writable;

readonly attribute Promise<SocketInfo> opened;

readonly attribute Promise<undefined> closed;
Promise<undefined> close(optional any reason);

[NewObject] Socket startTls();
};

The terms ReadableStream and WritableStream are defined in [WHATWG-STREAMS].

The readable attribute is a ReadableStream which receives data from the server the socket is con-
nected to.

The below example shows typical ReadableStream usage to read data from a socket:

import { connect } from 'sockets';
const socket = connect("google.com:80");

const reader = socket.readable.getReader();

while (true) {
const { value, done } = await reader.read();
if (done) {

// the ReadableStream has been closed or cancelled
break;

}
// In many protocols the `value` needs to be decoded to be used:
const decoder = new TextDecoder();
console.log(decoder.decode(value));

}

reader.releaseLock();

The ReadableStream currently is defined to operate in non-byte mode, that is the type parameter
to the ReadableStream constructor is not set. This means the stream’s controller is
ReadableStreamDefaultController. This, however, should be discussed and may be made con-
figurable. It is reasonable, for instance, to assume that sockets used for most TCP cases would be
byte-oriented, while sockets used for messages (e.g. UDP) would not.

2.3. Attributes

2.3.1. readable

6 © Ecma International 2025

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-undefined
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-undefined
https://webidl.spec.whatwg.org/#idl-any
https://webidl.spec.whatwg.org/#NewObject
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#readablestreamdefaultcontroller

The writable attribute is a WritableStream which sends data to the server the socket is connected
to.

The below example shows typical WritableStream usage to write data to a socket:

import { connect } from 'sockets';
const socket = connect("google.com:80");

const writer = socket.writable.getWriter();
const encoder = new TextEncoder();
writer.write(encoder.encode("GET / HTTP/1.0\r\n\r\n"));

The opened attribute is a promise that is resolved when the socket connection has been success-
fully established, or is rejected if the connection fails. For sockets which use secure-transport, the
resolution of the opened promise indicates the completion of the secure handshake.

The opened promise resolves a SocketInfo dictionary that optionally provides details about the
connection that has been established.

By default, the opened promise is marked as handled.

The closed attribute is a promise which can be used to keep track of the socket state. It gets re-
solved under the following circumstances:

• the close() method is called on the socket
• the socket was constructed with the allowHalfOpen parameter set to false, the

ReadableStream is being read from, and the remote connection sends a FIN packet
(graceful closure) or a RST packet

The current Cloudflare Workers implementation behaves as described above, specifically the
ReadableStream needs to be read until completion for the closed promise to resolve, if the
ReadableStream is not read then even if the server closes the connection the closed promise will
not resolve.

Whether the promise should resolve without the ReadableStream being read is up for discussion.

It can also be rejected with a SocketError when a socket connection could not be established under
the following circumstances:

• The address/port combo requested is blocked
• A transient issue with the runtime

Cancelling the socket’s ReadableStream and closing the socket’s WritableStream does not resolve
the closed promise.

2.3.2. writable

2.3.3. opened

2.3.4. closed

© Ecma International 2025 7

https://streams.spec.whatwg.org/#writablestream
https://streams.spec.whatwg.org/#writablestream

The close() method closes the socket and its underlying connection. It returns the same promise
as the closed attribute.

When called, the ReadableStream and WritableStream associated with the Socket will be can-
celed and aborted, respectively. If the reason argument is specified, the reason will be passed on
to both the ReadableStream and WritableStream.

If the opened promise is still pending, it will be rejected with the reason.

The startTls() method enables opportunistic TLS (otherwise known as StartTLS) which is a re-
quirement for some protocols (primarily postgres/mysql and other DB protocols).

In this secureTransport mode of operation the socket begins the connection in plain-text, with
messages read and written without any encryption. Then once the startTls method is called on
the socket, the following shall take place:

• the original socket is closed, though the original connection is kept alive
• a secure TLS connection is established over that connection
• a new socket is created and returned from the startTls call

Here is a simple code example showing usage of the startTls() method:

import { connect } from 'sockets';
let sock = connect("google.com:443", { secureTransport: "starttls" });
// ... some code here ...
// We want to StartTLS at this point.
let tlsSock = sock.startTls();

The original readers and writers based off the original socket will no longer work. You must create
new readers and writers from the new socket returned by startTls.

The method must fail with an SocketError if:

• called on an existing TLS socket
• the secureTransport option defined on the Socket instance is not equal to "starttls".

Arguably, this should be a type of DOMException rather than TypeError. More discussion is neces-
sary on the form and structure of socket-related errors.

SocketError is an instance of TypeError. The error message should start with "SocketError: ".

An "connection failed" SocketError.

throw new SocketError('connection failed');

Should result in the following error:
Uncaught SocketError [TypeError]: SocketError: connection failed.

2.4. Methods

2.4.1. close(optional any reason)

2.4.2. startTls()

2.5. SocketError

8 © Ecma International 2025

https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream
https://en.wikipedia.org/wiki/Opportunistic_TLS
https://webidl.spec.whatwg.org/#idl-DOMException
https://webidl.spec.whatwg.org/#exceptiondef-typeerror
https://webidl.spec.whatwg.org/#exceptiondef-typeerror

[Exposed=*]
dictionary SocketAddress {

DOMString hostname;
unsigned short port;

};

typedef (DOMString or SocketAddress) AnySocketAddress;

enum SecureTransportKind { "off", "on", "starttls" };

[Exposed=*]
dictionary SocketOptions {

SecureTransportKind secureTransport = "off";
boolean allowHalfOpen = false;
DOMString sni = null;
DOMString[] alpn = [];

};

[Exposed=*]
interface Connect {

Socket connect(AnySocketAddress address, optional SocketOptions opts);
};

The connect() method performs the following steps:

1. New Socket instance is created with each of its attributes initialised immediately.
2. The socket’s opened promise is set to a new promise. Set opened.[[PromiseIsHandled]] to

true.
3. The socket’s closed promise is set to a new promise. Set closed.[[PromiseIsHandled]] to

true.
4. The created Socket instance is returned immediately in a pending state.
5. A connection is established to the specified SocketAddress asynchronously.
6. Once the connection is established, set info to a new SocketInfo, and Resolve opened

with info. For a socket using secure transport, the connection is considered to be
established once the secure handshake has been completed.

7. If the connection fails for any reason, set error to a new SocketError and reject the
socket’s closed and opened promises with error. Also, the readable is canceled with error
and the writable is aborted with error.

8. The instance’s ReadableStream and WritableStream streams can be used immediately
but may not actually transmit or receive data until the socket is fully opened.

At any point during the creation of the Socket instance, connect may throw a SocketError. One
case where this can happen is if the input address is incorrectly formatted.

The implementation may consider blocking connections to certain hostname/port combinations
which can pose a threat of abuse or security vulnerability.

For example, port 25 may be blocked to prevent abuse of SMTP servers and private IPs can be
blocked to avoid connecting to private services hosted locally (or on the server’s LAN).

secureTransport member
The secure transport mode to use.

3. connect

3.1. SocketOptions dictionary

© Ecma International 2025 9

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#a-new-promise
https://webidl.spec.whatwg.org/#a-new-promise
https://webidl.spec.whatwg.org/#resolve
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream

off
A connection is established in plain text.

on
A TLS connection is established using default CAs

starttls
Initially the same as the off option, the connection continues in plain text until the
startTls() method is called

alpn member
The Application-Layer Protocol Negotiation list to send, as an array of strings. If the server
agrees with one of the protocols specified in this list, it will return the matching protocol in the
info property. May be specified if and only if secureTransport is on or starttls.

sni member
The Server Name Indication TLS option to send as part of the TLS handshake. If specified,
requests that the server send a certificate with a matching common name. May be specified if
and only if secureTransport is on or starttls.

allowHalfOpen member
This option is similar to that offered by the Node.js net module and allows interoperability
with code which utilizes it.
false

The WritableStream- and the socket instance- will be automatically closed when a FIN
packet is received from the remote connection.

true
When a FIN packet is received, the socket will enter a "half-open" state where the
ReadableStream is closed but the WritableStream can still be written to.

remoteAddress member
Provides the hostname/port combo of the remote peer the Socket is connected to, for
example "example.com:443". This value may or may not be the same as the address
provided to the connect() method used to create the Socket.

localAddress member
Optionally provides the hostname/port combo of the local network endpoint, for example
"localhost:12345".

alpn property
If the server agrees with one of the protocols specified in the alpn negotiation list, returns
that protocol name as a string, otherwise null.

SocketAddress dictionary
The address to connect to. For example { hostname: "google.com", port: 443 }.
hostname

A connection is established in plain text.

port
A TLS connection is established using default CAs

DOMString
A hostname/port combo separated by a colon. For example "google.com:443".

3.2. SocketInfo dictionary

3.3. AnySocketAddress type

10 © Ecma International 2025

https://gpuweb.github.io/gpuweb/#dom-gpuadapter-info
https://webidl.spec.whatwg.org/#idl-DOMString

[WEBGPU]
Kai Ninomiya; Brandon Jones; Jim Blandy. WebGPU. URL: https://gpuweb.github.io/gpuweb/

[WEBIDL]
Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL:
https://webidl.spec.whatwg.org/

[WHATWG-STREAMS]
Adam Rice; et al. Streams Standard. Living Standard. URL: https://streams.spec.whatwg.org/

• allowHalfOpen, in § 3
• alpn

◦ dict-member for SocketInfo, in § 2.2
◦ dict-member for SocketOptions, in § 3

• AnySocketAddress, in § 3
• binding object, in § 1.3
• close(), in § 2.2
• closed, in § 2.2
• close(reason), in § 2.2
• Connect, in § 3
• connect, in § 1.2
• connect(address), in § 3
• connect(address, opts), in § 3
• hostname, in § 3
• localAddress, in § 2.2
• "off", in § 3
• "on", in § 3
• opened, in § 2.2
• port, in § 3
• readable, in § 2.2
• remoteAddress, in § 2.2
• secureTransport, in § 3
• SecureTransportKind, in § 3
• sni, in § 3
• Socket, in § 2.2
• socket, in § 1.1
• SocketAddress, in § 3
• SocketError, in § 2.5
• SocketInfo, in § 2.2
• SocketOptions, in § 3
• "starttls", in § 3
• startTls(), in § 2.2
• writable, in § 2.2

• [WEBGPU] defines the following terms:
◦ info

References
Normative References

Index
Terms defined by this specification

Terms defined by reference

© Ecma International 2025 11

https://gpuweb.github.io/gpuweb/
https://gpuweb.github.io/gpuweb/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://streams.spec.whatwg.org/
https://streams.spec.whatwg.org/

• [WEBIDL] defines the following terms:
◦ DOMException
◦ DOMString
◦ NewObject
◦ Promise
◦ TypeError
◦ a new promise
◦ any
◦ boolean
◦ resolve
◦ undefined
◦ unsigned short

• [WHATWG-STREAMS] defines the following terms:
◦ ReadableStream
◦ ReadableStreamDefaultController
◦ WritableStream

12 © Ecma International 2025

[Exposed=*]
dictionary SocketInfo {

DOMString remoteAddress = null;
DOMString localAddress = null;
DOMString alpn = null;

};

[Exposed=*]
interface Socket {

readonly attribute ReadableStream readable;
readonly attribute WritableStream writable;

readonly attribute Promise<SocketInfo> opened;

readonly attribute Promise<undefined> closed;
Promise<undefined> close(optional any reason);

[NewObject] Socket startTls();
};

[Exposed=*]
dictionary SocketAddress {

DOMString hostname;
unsigned short port;

};

typedef (DOMString or SocketAddress) AnySocketAddress;

enum SecureTransportKind { "off", "on", "starttls" };

[Exposed=*]
dictionary SocketOptions {

SecureTransportKind secureTransport = "off";
boolean allowHalfOpen = false;
DOMString sni = null;
DOMString[] alpn = [];

};

[Exposed=*]
interface Connect {

Socket connect(AnySocketAddress address, optional SocketOptions opts);
};

Ecma International
Rue du Rhone 114
CH-1204 Geneva
Tel: +41 22 849 6000
Fax: +41 22 849 6001
Web: https://ecma-international.org/

IDL Index

Copyright & Software License

© Ecma International 2025 13

https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://streams.spec.whatwg.org/#readablestream
https://streams.spec.whatwg.org/#writablestream
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-undefined
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-undefined
https://webidl.spec.whatwg.org/#idl-any
https://webidl.spec.whatwg.org/#NewObject
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://ecma-international.org/

© 2025 Ecma International

This draft document may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published, and dis-
tributed, in whole or in part, without restriction of any kind, provided that the above copyright no-
tice and this section are included on all such copies and derivative works. However, this document
itself may not be modified in any way, including by removing the copyright notice or references to
Ecma International, except as needed for the purpose of developing any document or deliverable
produced by Ecma International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA IN-
TERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-
POSE.

All Software contained in this document ("Software") is protected by copyright and is being made
available under the "BSD License", included below. This Software may be subject to third party
rights (rights from parties other than Ecma International), including patent rights, and no licenses
under such third party rights are granted under this license even if the third party concerned is
a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT MATTERS AVAIL-
ABLE AT https://ecma-international.org/memento/codeofconduct.htm FOR INFORMATION REGARD-
ING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL
STANDARDS.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTER-
NATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright Notice

Software License

14 © Ecma International 2025

https://ecma-international.org/memento/codeofconduct.htm

	Table of Contents
	Introduction

